Source code for nanite.model.model_conical_indenter

import lmfit
import numpy as np
from numpy import pi

from . import weight


def get_parameter_defaults():
    # The order of the parameters must match the order
    # of ´parameter_names´ and ´parameter_keys´.
    params = lmfit.Parameters()
    params.add("E", value=3e3, min=0)
    params.add("alpha", value=25, min=0, max=90, vary=False)
    params.add("nu", value=.5, min=0, max=0.5, vary=False)
    params.add("contact_point", value=0)
    params.add("baseline", value=0)
    return params


[docs]def hertz_conical(E, delta, alpha, nu, contact_point=0, baseline=0): r"""Hertz model for a conical indenter .. math:: F = \frac{2\tan\alpha}{\pi} \frac{E}{1-\nu^2} \delta^2 Parameters ---------- E: float Young's modulus [N/m²] delta: 1d ndarray Indentation [m] alpha: float Half cone angle [degrees] nu: float Poisson's ratio contact_point: float Indentation offset [m] baseline: float Force offset [N] negindent: bool If `True`, will assume that the indentation value(s) given by `delta` are negative and must be mutlitplied by -1. Returns ------- F: float Force [N] Notes ----- These approximations are made by the Hertz model: - The sample is isotropic. - The sample is a linear elastic solid. - The sample is extended infinitely in one half space. - The indenter is not deformable. - There are no additional interactions between sample and indenter. Additional assumptions: - infinitely sharp probe References ========== Love (1939) :cite:`Love1939` """ aa = 2*np.tan(alpha*pi/180)/pi * E/(1-nu**2) root = contact_point-delta pos = root > 0 bb = np.zeros_like(delta) bb[pos] = root[pos]**2 return aa*bb + baseline
def model(params, x): if x[0] < x[-1]: revert = True else: revert = False if revert: x = x[::-1] mf = hertz_conical(E=params["E"].value, delta=x, alpha=params["alpha"].value, nu=params["nu"].value, contact_point=params["contact_point"].value, baseline=params["baseline"].value) if revert: return mf[::-1] return mf def residual(params, delta, force, weight_cp=5e-7): """Compute residuals for fitting Parameters ---------- params: lmfit.Parameters The fitting parameters for `model` delta: 1D ndarray of lenght M The indentation distances force: 1D ndarray of length M The corresponding force data weight_cp: positive float or zero/False The distance from the contact point until which linear weights will be applied. Set to zero to disable weighting. """ md = model(params, delta) resid = force-md if weight_cp: # weight the curve so that the data around the contact_point do # not affect the fit so much. weights = weight.weight_cp(cp=params["contact_point"].value, delta=delta, weight_dist=weight_cp) resid *= weights return resid model_doc = hertz_conical.__doc__ model_key = "hertz_cone" model_name = "conical indenter (Hertz)" parameter_keys = ["E", "alpha", "nu", "contact_point", "baseline"] parameter_names = ["Young's Modulus", "Half Cone Angle", "Poisson's Ratio", "Contact Point", "Force Baseline"] parameter_units = ["Pa", "°", "", "m", "N"] valid_axes_x = ["tip position"] valid_axes_y = ["force"]